Restoration of remoted lithium by way of discharged state calendar ageing


  • Xiao, J. et al. Understanding and making use of Coulombic effectivity in lithium steel batteries. Nat. Power 5, 561–568 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hobold, G. M. et al. Shifting past 99.9% Coulombic effectivity for lithium anodes in liquid electrolytes. Nat. Power 6, 951–960 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Louli, A. J. et al. Diagnosing and correcting anode-free cell failure by way of electrolyte and morphological evaluation. Nat. Power 5, 693–702 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li steel batteries. Sci. Adv. 7, eabj3423 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geise, N. R., Kasse, R. M., Weker, J. N., Steinrück, H.-G. & Toney, M. F. Quantification of effectivity in lithium steel unfavorable electrodes by way of operando X-ray diffraction. Chem. Mater. 33, 7537–7545 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. et al. Plating/stripping conduct of precise lithium steel anode. Adv. Power Mater. 9, 1902254 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Okay.-H. et al. Lifeless lithium: Mass transport results on voltage, capability, and failure of lithium steel anodes. J. Mater. Chem. A 5, 11671–11681 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, F. et al. Dynamic spatial development of remoted lithium throughout battery operations. Nature 600, 659–663 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyle, D. T. et al. Corrosion of lithium steel anodes throughout calendar ageing and its microscopic origins. Nat. Power 6, 487–494 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Merrill, L. C., Rosenberg, S. G., Jungjohann, Okay. L. & Harrison, Okay. L. Uncovering the connection between getting older and biking on lithium steel battery self-discharge. ACS Appl. Power Mater. 4, 7589–7598 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wooden, S. M. et al. Predicting calendar getting older in lithium steel secondary batteries: the impacts of stable electrolyte interphase composition and stability. Adv. Power Mater. 8, 1801427 (2018).

    Article 

    Google Scholar
     

  • Lin, D. et al. Quick galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, C. et al. Rejuvenating lifeless lithium provide in lithium steel anodes by iodine redox. Nat. Power 6, 378–387 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, C. et al. Chemically induced exercise restoration of remoted lithium in anode-free lithium steel batteries. Nano Lett. 22, 9268–9274 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Merrill, L. C. et al. Function of coatings as synthetic stable electrolyte interphases on lithium steel self-discharge. J. Phys. Chem. C 126, 17490–17501 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ren, X. et al. Enabling high-voltage lithium-metal batteries underneath sensible circumstances. Joule 3, 1662–1676 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. Bodily orphaning versus chemical instability: is dendritic electrodeposition of Li deadly? ACS Power Lett. 4, 1349–1355 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhuo, Z. et al. Respiration and oscillating progress of solid-electrolyte-interphase upon electrochemical biking. Chem. Commun. 54, 814–817 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. et al. Quantifying inactive lithium in lithium steel batteries. Nature 572, 511–515 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez, A. J. et al. Plan-view Operando video microscopy of Li steel anodes: figuring out the coupled relationships amongst nucleation, morphology, and reversibility. ACS Power Lett. 5, 994–1004 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium progress mechanisms in liquid electrolytes. Power Environ. Sci. 9, 3221–3229 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. R., Yan, C., Ding, J. F., Peng, H. J. & Zhang, Q. New insights into “lifeless lithium” throughout stripping in lithium steel batteries. J. Power Chem. 62, 289–294 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. et al. Stress-tailored lithium deposition and dissolution in lithium steel batteries. Nat. Power 6, 987–994 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Environment friendly lithium steel biking over a variety of pressures from an anion-derived solid-electrolyte interphase framework. ACS Power Lett. 6, 816–825 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Louli, A. J. et al. Exploring the influence of mechanical strain on the efficiency of anode-free lithium steel cells. J. Electrochem. Soc. 166, A1291–A1299 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. & Zhu, M. Modeling of SEI layer progress and electrochemical impedance spectroscopy response utilizing a thermal-electrochemical mannequin of Li-ion batteries. ECS Trans. 61, 43–61 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lv, D. et al. Failure mechanism for fast-charged lithium steel batteries with liquid electrolytes. Adv. Power Mater. 5, 1400993 (2015).

    Article 

    Google Scholar
     

  • Han, B. et al. Conformal three-dimensional interphase of Li steel anode revealed by low-dose cryoelectron microscopy. Matter 4, 3741–3752 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sayavong, P. et al. Dissolution of the stable electrolyte interphase and its results on lithium steel anode cyclability. J. Am. Chem. Soc. 145, 12342–12350 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oyakhire, S. T. et al. Electrical resistance of the present collector controls lithium morphology. Nat. Comm. 13, 3986 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *